alexa The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT).
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Bewes JM, Suchowerska N, Jackson M, Zhang M, McKenzie DR

Abstract Share this page

Abstract Intensity-modulated radiation therapy (IMRT) achieves optimal dose conformity to the tumor through the use of spatially and temporally modulated radiation fields. In particular, average dose rate and instantaneous dose rate (pulse amplitude) are highly variable within a single IMRT fraction. In this study we isolate these variables and determine their impact on cell survival. Survival was assessed using a clonogenic assay. Two cell lines of differing radiosensitivity were examined: melanoma (MM576) and non-small cell lung cancer (NCI-H460). The survival fraction was observed to be independent of instantaneous dose rate. A statistically significant trend to increased survival was observed as the average dose rate was decreased, for a constant total dose. The results are relevant to IMRT practice, where average treatment times can be significantly extended to allow for movement of the multi-leaf collimator (MLC). Our in vitro study adds to the pool of theoretical evidence for the consequences of protracted treatments. We find that extended delivery times can substantially increase the cell survival. This also suggests that regional variation in the dose-rate history across a tumor, which is inherent to IMRT, will affect radiation dose efficacy. This article was published in Phys Med Biol and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords