alexa The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Williamson DH, Lund P, Krebs HA

Abstract Share this page

Abstract 1. The concentrations of the oxidized and reduced substrates of the lactate-, beta-hydroxybutyrate- and glutamate-dehydrogenase systems were measured in rat livers freeze-clamped as soon as possible after death. The substrates of these dehydrogenases are likely to be in equilibrium with free NAD(+) and NADH, and the ratio of the free dinucleotides can be calculated from the measured concentrations of the substrates and the equilibrium constants (Holzer, Schultz & Lynen, 1956; Bücher & Klingenberg, 1958). The lactate-dehydrogenase system reflects the [NAD(+)]/[NADH] ratio in the cytoplasm, the beta-hydroxybutyrate dehydrogenase that in the mitochondrial cristae and the glutamate dehydrogenase that in the mitochondrial matrix. 2. The equilibrium constants of lactate dehydrogenase (EC 1.1.1.27), beta-hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were redetermined for near-physiological conditions (38 degrees ; I0.25). 3. The mean [NAD(+)]/[NADH] ratio of rat-liver cytoplasm was calculated as 725 (pH7.0) in well-fed rats, 528 in starved rats and 208 in alloxan-diabetic rats. 4. The [NAD(+)]/[NADH] ratio for the mitochondrial matrix and cristae gave virtually identical values in the same metabolic state. This indicates that beta-hydroxybutyrate dehydrogenase and glutamate dehydrogenase share a common pool of dinucleotide. 5. The mean [NAD(+)]/[NADH] ratio within the liver mitochondria of well-fed rats was about 8. It fell to about 5 in starvation and rose to about 10 in alloxan-diabetes. 6. The [NAD(+)]/[NADH] ratios of cytoplasm and mitochondria are thus greatly different and do not necessarily move in parallel when the metabolic state of the liver changes. 7. The ratios found for the free dinucleotides differ greatly from those recorded for the total dinucleotides because much more NADH than NAD(+) is protein-bound. 8. The bearing of these findings on various problems, including the following, is discussed: the number of NAD(+)-NADH pools in liver cells; the applicability of the method to tissues other than liver; the transhydrogenase activity of glutamate dehydrogenase; the physiological significance of the difference of the redox states of mitochondria and cytoplasm; aspects of the regulation of the redox state of cell compartments; the steady-state concentration of mitochondrial oxaloacetate; the relations between the redox state of cell compartments and ketosis.
This article was published in Biochem J and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords