alexa The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Hendriks FM, Brokken D, Oomens CW, Bader DL, Baaijens FP

Abstract Share this page

Abstract Although the mechanical behavior of the top layer of the skin, the epidermis, is an important consideration in several clinical and cosmetic applications, there are few reported studies on this layer. The in vivo mechanical behavior of the upper skin layer (here defined as epidermis and papillar dermis) was characterized using a combined experimental and modeling approach. The work was based on the hypothesis that experiments with different length scales represent the mechanical behavior of different skin layers. Suction measurements with aperture diameters of 1, 2 and 6 mm were combined with ultrasound and optical coherence tomography to study the deformation of the skin layers. The experiments were simulated for small displacements with a two-layered finite element model representing the upper layer and the reticular dermis. An identification method compared the experimental and numerical results to identify the material parameters of the model. For one subject the whole parameter estimation procedure was completed, leading to a stiffness of C(10,ul) = 0.11 kPa for the top-layer and C(10,rd) = 0.16 MPa for the reticular dermis. This unexpected, extreme stiffness ratio of the material parameters let to convergence problems of the finite element software for most of the individuals. This article was published in Med Eng Phys and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords