alexa The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress.
Environmental Sciences

Environmental Sciences

Journal of Ecosystem & Ecography

Author(s): Wu J, Seliskar DM, Gallagher JL

Abstract Share this page

Abstract Callus cultures of the salt marsh grass Spartina patens were examined to determine changes and consistencies in membrane lipid composition in response to salt. Major membrane lipid classes remained stable at all salinity levels (0, 170, 340 mmol/L). However, the membrane protein to lipid ratio decreased significantly in response to elevated NaCl. Callus plasma membrane (PM) consisted predominantly of sterols, about 60\% (mol\%) of the total lipids. Glycolipid was the second largest lipid class, making up about 20\% (mol\%) of the total. With increasing salinity, the relative percentage of sitosterol decreased, while that of campesterol increased. The phospholipid species detected were phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI). When callus was grown at 340 mmol/L NaCl, PC increased significantly. PI and PS were also significantly elevated in salinity treatments. Only 24-32\% of the PM fatty acids were common plant membrane fatty acids, C16, C18, C20, and C22, while over 60\% were the less common fatty acids, C11 and C14. Membrane fluidity remained stable in response to growth medium salinity. The findings on membrane responses to salinity will facilitate a better understanding of this halophyte's tactics for salt tolerance. This article was published in Am J Bot and referenced in Journal of Ecosystem & Ecography

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords