alexa The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Woldringh CL

Abstract Share this page

Abstract Many recent reviews in the field of bacterial chromosome segregation propose that newly replicated DNA is actively separated by the functioning of specific proteins. This view is primarily based on an interpretation of the position of fluorescently labelled DNA regions and proteins in analogy to the active segregation mechanism in eukaryotic cells, i.e. to mitosis. So far, physical aspects of DNA organization such as the diffusional movement of DNA supercoil segments and their interaction with soluble proteins, leading to a phase separation between cytoplasm and nucleoid, have received relatively little attention. Here, a quite different view is described taking into account DNA-protein interactions, the large variation in the cellular position of fluorescent foci and the compaction and fusion of segregated nucleoids upon inhibition of RNA or protein synthesis. It is proposed that the random diffusion of DNA supercoil segments is transiently constrained by the process of co- transcriptional translation and translocation (transertion) of membrane proteins. After initiation of DNA replication, a bias in the positioning of transertion areas creates a bidirectionality in chromosome segregation that becomes self-enhanced when neighbouring genes on the same daughter chromosome are expressed. This transertion-mediated segregation model is applicable to multifork replication during rapid growth and to multiple chromosomes and plasmids that occur in many bacteria.
This article was published in Mol Microbiol and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords