alexa The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types.
Social & Political Sciences

Social & Political Sciences

Journal of Defense Management

Author(s): Dick CA, Brown DM, Donaldson K, Stone V, Dick CA, Brown DM, Donaldson K, Stone V

Abstract Share this page

Abstract PM10 contains an ultrafine component, which is generally derived from combustion processes. This ultrafine fraction may be a factor in the increases in exacerbations of respiratory disease and deaths from cardiorespiratory causes associated with transient increases in levels of PM10. By using four different ultrafine particles (carbon black, cobalt, nickel, and titanium dioxide), we set out to determine the attributes of the ultrafine particle (surface area, chemical composition, particle number, or surface reactivity) that contribute most to its toxicity and proinflammatory effects both in vivo and in vitro. Instillation of 125 micro g ultrafine carbon black (UFCB) and ultrafine cobalt (UFCo) particles induced a significant influx of neutrophils at both 4 and 18 h postinstillation. Accompanying the influx of neutrophils was an increase in macrophage inflammatory protein-2 (MIP-2) (at 4 h) and an increase in gamma-glutamyl transpeptidase (at 18 h) in bronchoalveolar lavage fluid (BAL). Ultrafine nickel (UFNi) did not induce a significant increase in neutrophil influx until 18 h postinstillation. The increase in neutrophils induced by UFNi at this timepoint was comparable to that induced by UFCo and UFCB. UFTi did not induce a significant increase in neutrophils following instillation into the rat lung. The levels of MIP-2 observed at 4 h and neutrophil influx at 18 h induced by the particle samples were consistent with the pattern of surface free radical generation (as measured by the plasmid scission assay) whereby UFCo, UFCB, and UFNi all cause significant increases in inflammatory markers, as well as inducing a significant depletion of supercoiled plasmid DNA, indicative of hydroxyl radical generation. A role for free radicals and reactive oxygen species (ROS) in mediating ultrafine inflammation is further strengthened by the ability of the antioxidants N-acetylcysteine (NAC) and glutathione monoethyl ester (GSHme) to block the particle induced release of tumour necrosis factor-alpha (TNF-alpha) from alveolar macrophages in vitro. The ultrafine particles in PM10 may cause adverse effects via oxidative stress, and this could have implications for susceptible individuals. Susceptible individuals, such as those with COPD or asthma, already exhibit preexisting oxidative stress and hence are in a primed state for further oxidative stress induced by occupational or environmental particles. This article was published in Inhal Toxicol and referenced in Journal of Defense Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version