alexa The role of inhibitory heterotrimeric G proteins in the control of in vivo heart rate dynamics.
Medicine

Medicine

Family Medicine & Medical Science Research

Author(s): Zuberi Z, Birnbaumer L, Tinker A

Abstract Share this page

Abstract Multiple isoforms of inhibitory Galpha-subunits (Galphai1,2,3, as well as Galphao) are present within the heart, and their role in modulating pacemaker function remains unresolved. Do inhibitory Galpha-subunits selectively modulate parasympathetic heart rate responses? Published findings using a variety of experimental approaches have implicated roles for Galphai2, Galphai3, and Galphao in parasympathetic signal transduction. We have compared in vivo different groups of mice with global genetic deletion of Gialpha1/Galphai3, Galphai2, and Galphao against littermate controls using implanted ECG telemetry. Significant resting tachycardia was observed in Galphai2(-/-) and Galphao(-/-) mice compared with control and Galphai1(-/-)/Galphai3(-/-) mice (P < 0.05). Loss of diurnal heart rate variation was seen exclusively in Galphao(-/-) mice. Using heart rate variability (HRV) analysis, compared with littermate controls (4.02 ms2 +/- 1.17; n = 6, Galphai2(-/-)) mice have a selective attenuation of high-frequency (HF) power (0.73 ms2 +/- 0.31; n = 5, P < 0.05). Galphai1(-/-)/Galphai3(-/-) and Galphao(-/-) cohorts have nonsignificant changes in HF power. Galphao(-/-) mice have a different basal HRV signature. The observed HRV phenotype in Galphai2(-/-) mice was qualitatively similar to atropine (1 mg/kg)-treated controls [and mice treated with the GIRK channel blocker tertiapinQ (0.05 mg/kg)]. Maximal cardioinhibitory response to the M(2)-receptor agonist carbachol (0.5 mg/kg) compared with basal heart rate was attenuated in Galphai2(-/-) mice (0.08 +/- 0.04; n = 6) compared to control (0.27 +/- 0.04; n = 7 P < 0.05). Our data suggest a selective defect of parasympathetic heart rate modulation in mice with Galphai2 deletion. Mice with Galphao deletion also have a defect in short-term heart rate dynamics, but this is qualitatively different to the effects of atropine, tertiapinQ, and Galphai2 deletion. In contrast, Galphai1 and Galphai3 do not appear to be essential for parasympathetic responses in vivo.
This article was published in Am J Physiol Regul Integr Comp Physiol and referenced in Family Medicine & Medical Science Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords