alexa The role of oxidative stress, metabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse.


Journal of Addiction Research & Therapy

Author(s): Yamamoto BK, Raudensky J

Abstract Share this page

Abstract Methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are amphetamine derivatives with high abuse liability. These amphetamine-related drugs of abuse mediate their effects through the acute activation of both dopaminergic and serotonergic neurons. Long-term abuse of these amphetamine derivatives, however, results in damage to both dopaminergic and serotonergic terminals throughout the brain. This toxicity is mediated in part by oxidative stress, metabolic compromise, and inflammation. The overall objective of this review is to highlight experimental evidence that METH and MDMA increase oxidative stress, produce mitochondrial dysfunction, and increase inflammation that converge and culminate in the long-term toxicity to dopaminergic and serotonergic neurons.
This article was published in J Neuroimmune Pharmacol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version