alexa The role of podocytes in glomerular pathobiology.
Nephrology

Nephrology

Journal of Nephrology & Therapeutics

Author(s): Asanuma K, Mundel P

Abstract Share this page

Abstract Podocytes are unique cells with a complex cellular organization. With respect to their cytoarchitecture, podocytes may be divided into three structurally and functionally different segments: cell body, major processes, and foot processes (FPs). The FPs of neighboring podocytes regularly interdigitate, leaving between them the filtration slits that are bridged by an extracellular structure, known as the slit diaphragm (SD). Podocytes cover the outer aspect of the glomerular basement membrane (GBM). They therefore form the final barrier to protein loss, which explains why podocyte injury is typically associated with marked proteinuria. Chronic podocyte injury may lead to podocyte detachment from the GBM. Our knowledge of the molecular structure of the SD has been remarkably improved in the past few years. Several molecules, including nephrin, CD2AP, FAT, ZO-1, P-cadherin, Podocin, and Neph 1-3 have all been shown to be associated with the SD complex, and some of these molecules are critical for its integrity. Podocytes are injured in many forms of human and experimental glomerular disease. The early events are characterized either by alterations in the molecular composition of the SD without visible changes in morphology or, more obviously, by a reorganization of FP structure with the fusion of filtration slits and the apical displacement of the SD. Based on recent insights into the molecular pathology of podocyte injury, at least four major causes have been identified that lead to the uniform reaction of FP effacement and proteinuria: (1) interference with the SD complex and its lipid rafts; (2) direct interference with the actin cytoskeleton; (3) interference with the GBM or with podocyte-GBM interaction; and (4) interference with the negative surface charge of podocytes. There is also evidence, in focal segmental glomerular sclerosis (FSGS) and in idiopathic nephrotic syndrome in humans and rats, that podocyte damage may be caused by circulating albuminuric factors. Ongoing studies in many laboratories are aiming at an understanding of the dynamic relationship between SD proteins, the actin cytoskeleton, and the dynamics of FP structure in nephrotic syndrome and FSGS. These studies should provide us with a better understanding of the biological mechanism underlying the podocyte response to injury. Such studies will potentially translate into more refined treatment and the prevention of proteinuria and progressive glomerular disease. This article was published in Clin Exp Nephrol and referenced in Journal of Nephrology & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 16th International Conference on Nephrology
    NOVEMBER 02-03, 2017 Atlanta, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords