alexa The role of the menisci in force transmission across the knee.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Walker PS, Erkman MJ

Abstract Share this page

Abstract Fourteen knees were studied by a method called spatial location, to determine the contact and load-bearing areas between the femur and the upper tibia in non-loaded and loaded conditions, at various angles of flexion. Under no load, contact occurred primarily on the menisci; the lateral aspects contacted at 0 degrees flexion, moving to the posterolateral aspects at 90 degrees flexion. An area of cartilage which frequently contacted was the medial tibial spine. Under loads of up to 150 kg, the lateral meniscus appeared to carry most of the load on that side of the joint, while on the medial side, the load was shared approximately equally by the meniscus and the exposed cartilage. These findings were verified on two knees by measuring contact pressure with a miniature transducer. Two implications of these findings are that the area of load-bearing is greatly increased and that the stability of the knee joint is enhanced by the menisci.
This article was published in Clin Orthop Relat Res and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Applied Chemistry
    October 16-17, 2017 Toronto, Canada
  • 2nd International Conference and Exhibition on Polymer Chemistry
    November 06-08, 2017 Chicago, USA
  • International Conference on Nuclear Chemistry
    December 8-9 , 2016 San Antonio, Texas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected].com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords