alexa The roles of free radicals in amyotrophic lateral sclerosis.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Liu D

Abstract Share this page

The mutations of the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene observed in amyotrophic lateral sclerosis (ALS) patients suggest that free radicals play a role in this fatal disease. Free radicals trigger oxidative damage to proteins, membrane lipids, and DNA, thereby destroying neurons. Mutations of the SOD gene may reduce its superoxide dismutase activity, thereby elevating free radical levels. In addition, the mutant SOD protein may function as a peroxidase to oxidize cellular components, and it may also react with peroxynitrite-a product of the reaction between superoxide and nitric oxide-to ultimately form nitrate proteins. The selective degeneration of motor neurons in ALS may be caused by the high level of Cu,Zn-SOD present in and the large number of glutamatergic synapses projecting to these neurons. Free radical-triggered and age-accumulated oxidation may modify the program controlling motor neuron death, thereby initiating apoptosis of motor neurons in young adults.

This article was published in J Mol Neurosci. and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version