alexa The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Down Syndrome & Chromosome Abnormalities

Author(s): Cheslock PS, Kemp BJ, Boumil RM, Dawson DS

Abstract Share this page

Errors in meiotic chromosome segregation are the leading cause of spontaneous abortions and birth defects. In humans, chromosomes that fail to experience crossovers (or exchanges) are error-prone, more likely than exchange chromosomes to mis-segregate in meiosis. We used a yeast model to investigate the mechanisms that partition nonexchange chromosomes. These studies showed that the spindle checkpoint genes MAD1, MAD2 and MAD3 have different roles. We identified a new meiotic role for MAD3; though dispensable for the segregation of exchange chromosomes, it is essential for the segregation of nonexchange chromosomes. This function of Mad3p could also be carried out by human BubR1. MAD1 and MAD2 act in a surveillance mechanism that mediates a metaphase delay in response to nonexchange chromosomes, whereas MAD3 acts as a crucial meiotic timer, mediating a prophase delay in every meiosis. These findings suggest plausible models for the basis of errant meiotic segregation in humans.

This article was published in Nat Genet and referenced in Journal of Down Syndrome & Chromosome Abnormalities

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version