alexa The SARS-CoV ferret model in an infection-challenge study.
Neurology

Neurology

International Journal of Neurorehabilitation

Author(s): Chu YK, Ali GD, Jia F, Li Q, Kelvin D,

Abstract Share this page

Abstract Phase I human clinical studies involving therapeutics for emerging and biodefense pathogens with low incidence, such as the severe acute respiratory syndrome coronavirus (SARS-CoV), requires at a minimum preclinical evaluation of efficacy in two well-characterized and robust animal models. Thus, a ferret SARS-CoV model was evaluated over a period of 58 days following extensive optimization and characterization of the model in order to validate clinical, histopathological, virological and immunological endpoints. Ferrets that were infected intranasally with 10(3) TCID50 SARS-CoV showed higher body temperature (2-6 d.p.i.), sneezing (5-10 d.p.i.), lesions (5-7 d.p.i.) and decreased WBC/lymphocytes (2-5 d.p.i.). SARS-CoV was detected up to 7 d.p.i. in various tissues and excreta, while neutralizing antibody titers rose at 7 d.p.i. and peaked at 14 d.p.i. At 29 d.p.i., one group was challenged with 10(3) TCID50 SARS-CoV, and an anamnestic response in neutralizing antibodies was evident with no detectable virus. This study supports the validity of the ferret model for use in evaluating efficacy of potential therapeutics to treat SARS.
This article was published in Virology and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords