alexa The small world inside large metabolic networks.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Wagner A, Fell DA

Abstract Share this page

Abstract The metabolic network of the catabolic, energy and biosynthetic metabolism of Escherichia coli is a paradigmatic case for the large genetic and metabolic networks that functional genomics efforts are beginning to elucidate. To analyse the structure of previously unknown networks involving hundreds or thousands of components by simple visual inspection is impossible, and quantitative approaches are needed to analyse them. We have undertaken a graph theoretical analysis of the E. coli metabolic network and find that this network is a small-world graph, a type of graph distinct from both regular and random networks and observed in a variety of seemingly unrelated areas, such as friendship networks in sociology, the structure of electrical power grids, and the nervous system of Caenorhabditis elegans. Moreover, the connectivity of the metabolites follows a power law, another unusual but by no means rare statistical distribution. This provides an objective criterion for the centrality of the tricarboxylic acid cycle to metabolism. The small-world architecture may serve to minimize transition times between metabolic states, and contains evidence about the evolutionary history of metabolism.
This article was published in Proc Biol Sci and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]ine.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords