alexa The substrate specificity of hormone-sensitive lipase from adipose tissue of the Antarctic fish Trematomus newnesi.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Hazel JR, Sidell BD

Abstract Share this page

Abstract Antarctic fishes of the suborder Notothenioidei characteristically possess large stores of neutral lipids that have been shown to be important both in conferring buoyant lift and as a caloric resource for energy metabolism. Previous work has established that the aerobic energy metabolism of Antarctic fish is fueled predominantly by the catabolism of fatty acids, with the catabolic machinery displaying a preference for the oxidation of unsaturated fatty acids. The composition of the fatty acids released from adipose tissue of Antarctic fish during lipolysis, however, has not previously been demonstrated. Employing a substrate competition assay, we have characterized the substrate specificity of hormone-sensitive lipase (HSL) from adipose tissue of the Antarctic fish Trematomus newnesi. Rates of oleic acid release from radiolabeled triolein were quantified in the presence and absence of a nonradiolabeled cosubstrate. Polyunsaturated species of triacylglycerols (TAGs) containing 18:2 or 20:4 depressed rates of oleate release by 70-75\% below control values. Most of the molecular species of TAG containing monoenoic fatty acids (i.e. those containing 14:1, 16:1 or 20:1) had no significant effect on rates of oleate release. By contrast, oleate release from triolein was actually stimulated (by 2-4-fold) by both saturated species of TAG (i.e. those containing 14:0, 16:0 and 18:0) and those possessing long-chain (22:1 and 24:1) monoenes (by 1.2-1.5-fold). Thus, the rank order of substrate preference for adipose tissue HSL was: polyunsaturates > monoenes > saturates. Degree of fatty acid unsaturation had a more marked effect on rates of hydrolysis than did fatty acid chain length. In addition, the enzyme displayed a preference for the hydrolysis of sn-1,2 rather than sn-1,3 diacylglycerols. These data indicate that the substrate specificity of adipose tissue HSL may be an important factor in determining which fatty acids are mobilized during stimulated lipolysis and which are made available for catabolism by other tissues of Antarctic fishes. Our data further suggest that TAGs containing some saturated fatty acids may be sufficiently poor substrates for catabolism by HSL to explain their disproportionate accumulation in adipose tissue. Such a mechanism could also contribute to the ontogenetic accumulation of fats that has been reported as an underlying basis for the positive correlation of buoyancy with increasing body mass in this group.
This article was published in J Exp Biol and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords