alexa The toxicological relevance of paracetamol-induced inhibition of hepatic respiration and ATP depletion.
Business & Management

Business & Management

Journal of Business & Financial Affairs

Author(s): Strubelt O, Younes M

Abstract Share this page

Abstract In order to elucidate the role of mitochondrial dysfunction in paracetamol-induced hepatotoxicity, the effects of paracetamol on the oxygen consumption and ATP content of the isolated perfused rat liver were correlated with parameters of hepatic viability and hepatotoxicity. Paracetamol at 5 g/L reduced the oxygen consumption of the livers by about 80\% and hepatic ATP content by 96\%. Hepatotoxicity was evident from the nearly complete interruption of bile secretion, a marked release of enzymes [glutamate-pyruvate transaminase (GPT), lactate dehydrogenase (LDH)] in the perfusate, a depletion of hepatic glutathione and an accumulation of calcium in the liver. Paracetamol-induced hepatotoxicity could be prevented completely by using livers from non-fasted rats as well as by addition of fructose to the perfusate of livers from fasted animals. Both treatments resulted in an increased energy supply from anaerobic glycolysis as evidenced by a large release of lactate and pyruvate into the perfusate, but did not inhibit paracetamol-induced decline of oxygen consumption. The decrease in hepatic oxygen consumption depended on the dose of paracetamol and occurred first at a concentration of 0.2 g/L (-10\%). LDH and GPT release, on the other hand, was elevated at 2 and 5 g/L and calcium accumulation occurred at 5 g/L paracetamol only. Inhibition of mixed-function oxidases by dithiocarb did not prevent the decrease in oxygen consumption and the resulting hepatic injury induced by paracetamol. The oral administration of the high dose of 5 g/kg paracetamol in vivo to rats exerted strong hepatotoxicity but produced maximal serum levels of 800 mg/L paracetamol only and did not decrease hepatic oxygen consumption as measured in vitro. Our results show that in the isolated perfused rat liver in vitro, only high concentrations of paracetamol can produce "chemical hypoxia" by attacking mitochondria so as to cause hepatic injury. Such high concentrations of paracetamol are not attained in vivo, however. "Chemical hypoxia", thus, seems not to be relevant to the well-known hepatotoxic action of paracetamol.
This article was published in Biochem Pharmacol and referenced in Journal of Business & Financial Affairs

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version