alexa The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor.
Biochemistry

Biochemistry

Enzyme Engineering

Author(s): Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M,

Abstract Share this page

Abstract The twin-arginine translocation (Tat) pathway is a protein transport system for the export of folded proteins. Substrate proteins are targeted to the Tat translocase by N-terminal signal peptides harboring a distinctive R-R-x-Phi-Phi "twin-arginine" amino acid motif. Using a combination of proteomic techniques, the protein contents from the cell wall of the model Gram-positive bacterium Streptomyces coelicolor were identified and compared with that of mutant strains defective in Tat transport. The proteomic experiments pointed to 43 potentially Tat-dependent extracellular proteins. Of these, 25 were verified as bearing bona fide Tat-targeting signal peptides after independent screening with a facile, rapid, and sensitive reporter assay. The identified Tat substrates, among others, include polymer-degrading enzymes, phosphatases, and binding proteins as well as enzymes involved in secondary metabolism. Moreover, in addition to predicted extracellular substrates, putative lipoproteins were shown to be Tat-dependent. This work provides strong experimental evidence that the Tat system is used as a major general export pathway in Streptomyces.
This article was published in Proc Natl Acad Sci U S A and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords