alexa The unique paired retinal vascular pattern in marsupials: structural, functional and evolutionary perspectives based on observations in a range of species.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): McMenamin PG

Abstract Share this page

Abstract BACKGROUND: In the few marsupial species studied to date that possess a retinal vasculature, the arterial and venous segments, down to the smallest calibre capillaries, have been shown to occur in pairs. It is a pattern seen in the marsupial central nervous system (CNS) but not in other tissues in this group or in any tissues in eutherian mammals. The aim of the present study was to investigate the presence of retinal vessels in a range of non-eutherian mammalian species (marsupials and monotremes) and to determine if the pattern of paired vessels was a widespread phenomenon within this animal group. METHODS: Species studied included a monotreme, the short-billed echidna (Tachyglossus aculeatus) and a range of Australian marsupials, the honey possum (Tarispedidae rostratus), fat-tailed dunnart (Sminthopsis crassicaudata), grey-bellied dunnart (Sminthopsis griseoventer), numbat (Myrmecobius fasciatus), broad-footed marsupial mouse (Antechinus godmani) and the North American opossum (Didelphis virginiana). Eyes were fixed in glutaraldehyde or paraformaldehyde and retinas were embedded in resin for light and electron microscopic analysis. RESULTS: Examination revealed that in those species with retinal vessels (fat-tailed dunnart, grey-bellied dunnart, numbat, marsupial mouse, North American opossum) the pattern of vessels differs from the conventional plexus-like arrangement of mammalian retinal vasculature (that is, anastomotic networks of capillaries between arterioles and venules). In marsupials retinal vessels always occur in closely related pairs, with the arteriolar limb usually situated on the vitread aspect. Vessels penetrate the retina and branch to form layers of paired capillaries as far as the outer nuclear layer in some species. The capillaries form blind-ended hairpin loops and display classical morphological features of CNS capillaries CONCLUSION: The phylogenetic relations of this vascular pattern in the marsupial CNS and retina, and in the CNS of a few other classes of non-mammalian vertebrates, suggest that retinal vascularisation may have evolved independently in marsupial and eutherian mammals and that the former may have evolved from a common primitive mammal-like reptilian ancestor which possessed paired vasculature in the CNS. Eutherian mammals may have evolved from an ancestor with anastomotic networks in the CNS or this pattern may have evolved later in eutherian mammal evolutionary radiation. The possible functional and physiological significance of the paired vessels is discussed.
This article was published in Br J Ophthalmol and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords