alexa The use of quantitative computed tomography to estimate risk of fracture of the hip from falls.


Journal of Osteoporosis and Physical Activity

Author(s): Lotz JC, Hayes WC

Abstract Share this page

Abstract We conducted an in vitro investigation of the loads and energies needed to fracture the proximal part of the femur in twelve fresh cadavera under loading conditions simulating one particular type of fall. The fracture loads ranged from 778 to 4,040 newtons and the work to fracture, from five to fifty-one joules. We also investigated the relationship between the fracture loads and several potential indices of bone strength, which were measured non-invasively at the subcapital, basic-cervical, and intertrochanteric regions with quantitative computed tomography. A very high positive correlation with the fracture load resulted from use of an intertrochanteric index--the product of the average trabecular computed-tomography number and the total cross-sectional area of the bone (R2 = 0.93, standard error of estimate = 295 newtons, and p less than 0.00001). We expect the use of this parameter to result in improved assessments of the degree of osteoporosis and of the component of risk of fracture of the hip that is associated with bone strength. However, the measured work to fracture for the isolated femur was an order of magnitude smaller than estimates of the energy available during a typical fall (about 450 joules), suggesting that energy absorbed during falling and impact, rather than bone strength, may be the dominant factors in the biomechanics of fracture of the hip.
This article was published in J Bone Joint Surg Am and referenced in Journal of Osteoporosis and Physical Activity

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version