alexa The UvrABC endonuclease system of Escherichia coli--a view from Baltimore.


Biochemistry & Analytical Biochemistry

Author(s): Grossman L, Yeung AT

Abstract Share this page

Abstract Nucleotide excision is initiated by the UvrABC endonuclease system in which the initial DNA interaction is with UvrA which was dimerized in the presence of ATP. Nucleoprotein formation most likely takes place on undamaged regions of DNA by (UvrA)2 which has been dimerized in the presence of ATP. Topological unwinding of DNA, driven by ATP binding, is increased by the presence of UvrB to approximately a single helical turn. The Uvr(A)2B complex translocates to a damaged site by the combined Uvr(A)2B helicase in which the driving force is provided by the UvrB-associated ATPase. The dual incision reaction is initiated by the binding of the UvrC protein to the Uvr(A)2B-nucleoprotein complex. The proteins in this post-incision nucleoprotein complex do not turn over and require the presence of the UvrD protein and DNA polymerase I under polymerizing conditions. The final integrity of the DNA strands is restored with polynucleotide ligase.
This article was published in Mutat Res and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version