alexa Theoretical study of Δ-3-(+)-carene oxidation.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Baptista L, Fernandes Francisco L, Dias JF, da Silva EC, Ferreira dos Santos CV,

Abstract Share this page

Abstract In this work, the rate-limiting steps of Δ(3)-carene oxidation by ozone and OH radicals were studied. The thermochemical and kinetic parameters were evaluated using the B3LYP, PBE1PBE and BHandHLYP functionals, coupled cluster methods and the 6-311G(d,p) and 6-311++G(d,p) basis sets. The attack on the double bond may occur in different orientations, leading to different oxidation products. The rate coefficients of each step of the reactions were evaluated using conventional canonical transition-state theory and variational canonical transition-state theory whenever necessary. The theoretical rate coefficient for the ozonolysis mechanism, evaluated at the CCSD(T)/6-31G(d,p)//PBE1PBE/6-311++G(d,p) level, was 2.08 × 10(-17) cm(3) molecule(-1) s(-1). The coefficient for the oxidation initialised by the OH radical, calculated at the BHandHLYP/6-311++G(d,p) level, was 5.06 × 10(-12) cm(3) molecule(-1) s(-1). These values are in reasonable agreement with the experimental results. The importance of these reactions in atmospheric chemistry is discussed. This article was published in Phys Chem Chem Phys and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version