alexa Therapeutic potential of biofilm-dispersing enzymes.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Current Synthetic and Systems Biology

Author(s): Kaplan JB

Abstract Share this page

Abstract Surface-attached colonies of bacteria known as biofilms play a major role in the pathogenesis of medical device infections. Biofilm colonies are notorious for their resistance to antibiotics and host defenses, which makes most device infections difficult or impossible to eradicate. Bacterial cells in a biofilm are held together by an extracellular polymeric matrix that is synthesized by the bacteria themselves. Enzymes that degrade biofilm matrix polymers have been shown to inhibit biofilm formation, detach established biofilm colonies, and render biofilm cells sensitive to killing by antimicrobial agents. This review discusses the potential use of biofilm matrix-degrading enzymes as anti-biofilm agents for the treatment and prevention of device infections. Two enzymes, deoxyribonuclease I and the glycoside hydrolase dispersin B, will be reviewed in detail. In vitro and in vivo studies demonstrating the anti-biofilm activities of these two enzymes will be summarized, and the therapeutic potential and possible drawbacks of using these enzymes as clinical agents will be discussed.
This article was published in Int J Artif Organs and referenced in Current Synthetic and Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords