alexa Thermal denaturation and aggregation of apoform of glycogen phosphorylase b. Effect of crowding agents and chaperones.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Eronina TB, Chebotareva NA, Roman SG, Kleymenov SY, Makeeva VF,

Abstract Share this page

Abstract The effect of protein and chemical chaperones and crowders on thermal stability and aggregation of apoform of rabbit muscle glycogen phosphorylase b (apoPhb) has been studied at 37°C. Proline suppressed heat-induced loss in ability of apoPhb to reconstitution at 37°C, whereas α-crystallin did not reveal a protective action. To compare the antiaggregation activity of intact and crosslinked α-crystallins, an adsorption capacity (AC) of a protein chaperone with respect to a target protein was estimated. This parameter is a measure of the antiaggregation activity. Crosslinking of α-crystallin results in 11-fold decrease in the initial AC. The nonlinear character of the relative initial rate of apoPhb aggregation versus the [intact α-crystallin]/[apoPhb] ratio plot is indicative of the decrease in the AC of α-crystallin with increasing the [α-crystallin]/[apoPhb] ratio and can be interpreted as an evidence for dynamic chaperone structure and polydispersity of α-crystallin-target protein complexes. As for chemical chaperones, a semisaturation concentration of the latter was used as a characteristic of the antiaggregation activity. A decrease in the semisaturation concentration for proline was observed in the presence of the crowders (polyethylene glycol and Ficoll-70). Copyright © 2013 Wiley Periodicals, Inc. This article was published in Biopolymers and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords