alexa Thermal inactivation of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in fruit juices.


Journal of Microbial & Biochemical Technology

Author(s): Mazzotta AS

Abstract Share this page

Abstract The heat resistance of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella enterica (serotypes Typhimurium, Enteritidis, Gaminara, Rubislaw, and Hartford), and Listeria monocytogenes was evaluated in single-strength apple. orange, and white grape juices adjusted to pH 3.9. The heat resistance increased significantly (P < 0.05) after acid adaptation. Salmonella had an overall lower heat resistance than the other pathogens. Acid-adapted E. coli O157:H7 presented the highest heat resistance in all juices at the temperatures tested, with lower z-values than Salmonella and L. monocytogenes. The heat resistance (D(60 degrees C)-values) of all three pathogens, assessed in tryptic soy broth adjusted to different pH values, increased above pH 4.0. From the results obtained in this study, one example of a treatment that will inactivate 5 logs of vegetative pathogens was calculated as 3 s at 71.1 degrees C (z-value of 5.3 degrees C). Normal processing conditions calculated for hot-filled, shelf-stable juices achieve a lethality in excess of 50,000 D for all three pathogens.
This article was published in J Food Prot and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version