alexa Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Assefa NG, Niiranen L, Willassen NP, Smals A, Moe E

Abstract Share this page

Abstract Uracil-DNA N-glycosylase (UNG; EC from Atlantic cod (cUNG) possesses cold adapted features like increased catalytic efficiency and reduced temperature optimum for activity compared to its warm-adapted homologue human UNG (hUNG). Here, we present the first thermal stability analysis of cUNG and hUNG by differential scanning calorimetry (DSC), and the results showed that cUNG is less stable than hUNG and unfolds at a melting temperature (T(m)) 9° lower than its warm-adapted homologue. In addition, an ion-pair (D183-K302) suggested to be crucial for global stability of hUNG was investigated by biochemical characterization and DSC of four mutants (cUNG G183D and cUNG G183D-R302K, hUNG D183G and hUNG D183G-K302R). The hUNG mutants with an expected disruption of the ion-pair showed a slight increase in stability with concomitant reduction in the enzyme activity, while the apparent introduction of the ion-pair in cUNG caused a reduction in the enzyme activity but no increase in stability. Because the mutants did not behave as expected, the phenomenon was further investigated by crystal structure determination. Indeed, the crystal structure of the hUNG D183G-K302R mutant revealed that compensating interactions for the loss of the ion-pair were generated close to and in regions distant from the mutation site. In conclusion, the reduced stability of cUNG supports the suggested requirement of a flexible structure for improved activity at low temperatures. Furthermore, the lack of a direct correlation between enzyme activity and global stability of the mutants supports the significance of distributing locally flexible and/or rigid regions for modulation of enzyme activity. Copyright © 2011 Elsevier Inc. All rights reserved. This article was published in Comp Biochem Physiol B Biochem Mol Biol and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version