alexa Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Hill JJ, Shalaev EY, Zografi G

Abstract Share this page

Abstract The internal, dynamical fluctuations of protein molecules exhibit many of the features typical of polymeric and bulk small molecule glass forming systems. The response of a protein's internal molecular mobility to temperature changes is similar to that of other amorphous systems, in that different types of motions freeze out at different temperatures, suggesting they exhibit the alpha-beta-modes of motion typical of polymeric glass formers. These modes of motion are attributed to the dynamic regimes that afford proteins the flexibility for function but that also develop into the large-scale collective motions that lead to unfolding. The protein dynamical transition, T(d), which has the same meaning as the T(g) value of other amorphous systems, is attributed to the temperature where protein activity is lost and the unfolding process is inhibited. This review describes how modulation of T(d) by hydration and lyoprotectants can determine the stability of protein molecules that have been processed as bulk, amorphous materials. It also examines the thermodynamic, dynamic, and molecular factors involved in stabilizing folded proteins, and the effects typical pharmaceutical processes can have on native protein structure in going from the solution state to the solid state. (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association This article was published in J Pharm Sci and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords