alexa Thin layer chromatography-blotting, a novel method for the detection of phosphoinositides.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Furutani M, Itoh T, Ijuin T, Tsujita K, Takenawa T

Abstract Share this page

Abstract Phosphoinositides are believed to be involved in fundamental cellular events such as signal transduction and vesicular trafficking. Aberrant metabolisms of this lipid, caused by mutations in phosphoinositide kinases, phosphatases and lipases are known to be related to variety of human disorders such as diabetes and cancer. While the majority of such information is obtained by analyzing genetic and biochemical properties of phosphoinositide-metabolic enzymes, direct measurement of cellular content of the lipid is hindered by the lack of a simple method that is sensitive enough to measure phosphoinositides present in trace amounts in vivo. Here, we describe a novel, thin layer chromatography (TLC)-based method by which cellular phosphoinositides are separated, transferred and detected by specific phosphoinositide-binding domains. This method was applied to follow the generation of minor phosphoinositides, such as PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to insulin and to compare PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels in several cancer cell lines. The method has potential application not only in investigating the physiological roles of phosphoinositides, but also in diagnosing metabolic disease and cancer by directly assessing phosphoinositide levels in samples obtained from patients. This article was published in J Biochem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version