alexa Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage.


Journal of Lasers, Optics & Photonics

Author(s): Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E,

Abstract Share this page

Abstract OBJECTIVES: This study sought to examine the ultrastructure of microvessels in normal and atherosclerotic coronary arteries and its association with plaque phenotype. BACKGROUND: Microvessels in atherosclerotic plaques are an entry point for inflammatory and red blood cells; yet, there are limited data on the ultrastructural integrity of microvessels in human atherosclerosis. METHODS: Microvessel density (MVD) and ultrastructural morphology were determined in the adventitia, intima-media border, and atherosclerotic plaque of 28 coronary arteries using immunohistochemistry for endothelial cells (Ulex europeaus, CD31/CD34), basement membrane (laminin, collagen IV), and mural cells (desmin, alpha-smooth muscle [SM] actin, smoothelin, SM1, SM2, SMemb). Ultrastructural characterization of microvessel morphology was performed by electron microscopy. RESULTS: The MVD was increased in advanced plaques compared with early plaques, which correlated with lesion morphology. Adventitial MVD was higher than intraplaque MVD in normal arteries and early plaques, but adventitial and intraplaque MVD were similar in advanced plaques. Although microvessel basement membranes were intact, the percentage of thin-walled microvessels was similarly low in normal and atherosclerotic adventitia, in the adventitia and the plaque, and in all plaque types. Intraplaque microvascular endothelial cells (ECs) were abnormal, with membrane blebs, intracytoplasmic vacuoles, open EC-EC junctions, and basement membrane detachment. Leukocyte infiltration was frequently observed by electron microscopy, and confirmed by CD45RO and CD68 immunohistochemistry. CONCLUSIONS: The MVD was associated with coronary plaque progression and morphology. Microvessels were thin-walled in normal and atherosclerotic arteries, and the compromised structural integrity of microvascular endothelium may explain the microvascular leakage responsible for intraplaque hemorrhage in advanced human coronary atherosclerosis.
This article was published in J Am Coll Cardiol and referenced in Journal of Lasers, Optics & Photonics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

1-702-714-7001Extn: 9042

General Science

Andrea Jason

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001Extn: 9042

© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version