alexa Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}.
Immunology

Immunology

Journal of Cell Signaling

Author(s): Gupta N, Ragsdale SW

Abstract Share this page

Abstract Rev-erbβ is a heme-binding nuclear hormone receptor that represses a broad spectrum of target genes involved in regulating metabolism, the circadian cycle, and proinflammatory responses. Here, we demonstrate that a thiol-disulfide redox switch controls the interaction between heme and the ligand-binding domain of Rev-erbβ. The reduced dithiol state of Rev-erbβ binds heme 5-fold more tightly than the oxidized disulfide state. By means of site-directed mutagenesis and by UV-visible and EPR spectroscopy, we also show that the ferric heme of reduced (dithiol) Rev-erbβ can undergo a redox-triggered switch from imidazole/thiol ligation (via His-568 and Cys-384, based on a prior crystal structure) to His/neutral residue ligation upon oxidation to the disulfide form. On the other hand, we find that change in the redox state of iron has no effect on heme binding to the ligand-binding domain of the protein. The low dissociation constant for the complex between Fe(3+)- or Fe(2+)-heme and the reduced dithiol state of the protein (K(d) = ∼ 20 nM) is in the range of the intracellular free heme concentration. We also determined that the Fe(2+)-heme bound to the ligand-binding domain of Rev-erbβ has high affinity for CO (K(d) = 60 nM), which replaces one of the internal ligands when bound. We suggest that this thiol-disulfide redox switch is one mechanism by which oxidative stress is linked to circadian and/or metabolic imbalance. Heme dissociation from Rev-erbβ has been shown to derepress the expression of target genes in response to changes in intracellular redox conditions. We propose that oxidative stress leads to oxidation of cysteine(s), thus releasing heme from Rev-erbβ and altering its transcriptional activity.
This article was published in J Biol Chem and referenced in Journal of Cell Signaling

Relevant Expert PPTs

Relevant Speaker PPTs

  • Mehdi Shadaram
    Photonic Generation of Millimeter Wave Signals for Wireless Applications
    PPT Version | PDF Version
  • Ilana Kolodkin-Gal
    Maintaining motile cells inside the biofilm through cell-to-cell signaling, transcription regulation and evolution
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Shuk-Man Ka
    Renoprotective effects of citral on accelerated and severe lupus nephritis mice by inhibiting activation signal of NLRP3 inflammasome and enhancing Nrf2 activation
    PPT Version | PDF Version
  • Nwankwo Norbert Ikechukwu
    Direct computerized translation of biological data into biological information is now feasible: The gains of digital signal processing-based bioinformatics techniques
    PPT Version | PDF Version
  • Huidi Liu
    Reduced Expression of SOX7 in Ovarian Cancer: a Novel Tumor Suppressor through the Wnt/β-catenin Signaling Pathway
    PPT Version | PDF Version
  • Mirza Saqib Baig
    NOS1-derived nitric oxide promotes NF-kB stability and transcriptional activity by inhibiting suppressor of cytokine signaling (SOCS-1) in response to TLR4 activation
    PPT Version | PDF Version
  • Michael Schnoor
    Loss of HS1 inhibits neutrophil extravasation during inflammation via disturbed PKA signaling
    PPT Version | PDF Version
  • Myron R Szewczuk
    Novel signaling paradigm regulating TOLL-like receptors on innate immune cells
    PPT Version | PDF Version
  • Dilip Mukherjee
    Epidermal growth factor (EGF) promotes ovarian steroidogenesis and epidermal growth factor receptor (EGFR) signaling is required for gonadotropin-induced steroid production in common carp Cyprinus carpio
    PPT Version | PDF Version
  • Ji-Zhong Bai
    Astrocytic contribution to deficient Ca2+ signalling and oxidative stress mediated by TRPV4 channels in A40-induced hippocampal cell death
    PPT Version | PDF Version
  • Meg Mangin
    Clinical Evidence of Immune System Dysregulation Caused by Intracellular Infection
    PPT Version | PDF Version
  • Tamer M. A. Mohamed
    Targeting calcium signaling as a novel therapeutic strategy for cardiac hypertrophy and failure
    PDF Version
  • Alexander V. Sirotkin
    New hormonal and intracellular regulators of reproduction
    PPT Version | PDF Version
  • Vladimir E. Bondarenko
    Mathematical model of β1-adrenergic signaling in mouse ventricular myocytes as an in silico tool for the cardiovascular drug test
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version