alexa Thioredoxin networks in the malarial parasite Plasmodium falciparum.
Infectious Diseases

Infectious Diseases

Malaria Control & Elimination

Author(s): Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K

Abstract Share this page

Abstract The intraerythrocytic protozoan parasite Plasmodium falciparum is responsible for more than 500 million clinical cases of tropical malaria annually. Although exposed to high fluxes of reactive oxygen species, Plasmodium lacks the antioxidant enzymes catalase and glutathione peroxidase. Thus, the parasite depends on the antioxidant capacity of its host cell and its own peroxidases. These are fuelled by the thioredoxin system and are considered to represent the major defense line against peroxides. Five peroxidases that act in different compartments have been described in P. falciparum. They include two typical 2-Cys peroxiredoxins (Prx), a 1-Cys Prx, the so-called antioxidant protein (AOP), which is a further Prx acting on the basis of a 1-Cys mechanism, and a glutathione peroxidase-like thioredoxin peroxidase. Because of their central function in redox regulation and antioxidant defense, some of these proteins might represent highly interesting targets for structure-based drug development. In this article we summarize the present knowledge on the thioredoxin and peroxiredoxin metabolism in malaria parasitized red blood cells. We furthermore report novel data on the biochemical and kinetic characterization of different thioredoxins, of AOP, and of the classic 1-Cys peroxiredoxin of P. falciparum. This article was published in Antioxid Redox Signal and referenced in Malaria Control & Elimination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version