alexa Thirdhand smoke: a new dimension to the effects of cigarette smoke on the developing lung.
Infectious Diseases

Infectious Diseases

Air & Water Borne Diseases

Author(s): Rehan VK, Sakurai R, Torday JS

Abstract Share this page

Abstract The underlying mechanisms and effector molecules involved in mediating in utero smoke exposure-induced effects on the developing lung are only beginning to be understood. However, the effects of a newly discovered category of smoke, i.e., thirdhand smoke (THS), on the developing lung are completely unknown. We hypothesized that, in addition to nicotine, other components of THS would also affect lung development adversely. Fetal rat lung explants were exposed to nicotine, 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA), or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the two main tobacco-specific N-nitrosamine constituents of THS, for 24 h. We then determined key markers for alveolar paracrine signaling [epithelial differentiation markers surfactant phospholipid and protein synthesis; mesenchymal differentiation markers peroxisome proliferator-activated receptor γ (PPAR-γ), fibronectin and calponin], the BCL-2-to-Bax ratio (BCL-2/Bax), a marker of apoptosis and the involvement of nicotinic acetylcholine receptors (nAChR)-α3 and -α7 in mediating NNA's and NNK's effects on the developing lung. Similar to the effects of nicotine, exposure of the developing lung to either NNK or NNA resulted in disrupted homeostatic signaling, indicated by the downregulation of PPAR-γ, upregulation of fibronectin and calponin protein levels, decreased BCL-2/Bax, and the accompanying compensatory stimulation of surfactant phospholipid and protein synthesis. Furthermore, nAChR-α3 and -α7 had differential complex roles in mediating these effects. NNK and NNA exposure resulted in breakdown of alveolar epithelial-mesenchymal cross-talk, reflecting lipofibroblast-to-myofibroblast transdifferentiation, suggesting THS constituents as possible novel contributors to in utero smoke exposure-induced pulmonary damage. These data are particularly relevant for designing specific therapeutic strategies, and for formulating public health policies to minimize THS exposure.
This article was published in Am J Physiol Lung Cell Mol Physiol and referenced in Air & Water Borne Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version