alexa Three new powerful oseltamivir derivatives for inhibiting the neuraminidase of influenza virus.
Medicine

Medicine

Drug Designing: Open Access

Author(s): Wang SQ, Cheng XC, Dong WL, Wang RL, Chou KC

Abstract Share this page

Abstract Owing to its unique function in assisting the release of newly formed virus particles from the surface of an infected cell, neuraminidase, an antigenic glycoprotein enzyme, is a main target for drug design against influenza viruses. The group-1 neuraminidase of influenza virus possesses a 150-cavity, which is adjacent to the active pocket, and which renders conformational change from the 'open' form to the 'closed' form when the enzyme is binding with a ligand. Using AutoGrow evolutionary algorithm, one very unique fragment is screened out from the fragment databases by exploiting additional interactions with the 150-cavity. Subsequently, three derivatives were constructed by linking the unique fragment to oseltamivir at its three different sites. The three derivatives thus formed show much stronger inhibition power than oseltamivir, and hence may become excellent candidates for developing new and more powerful drugs for treating influenza. Or at the very least, the findings may stimulate new strategy or provide useful insights for working on the target vitally important to the health of human beings. Copyright © 2010 Elsevier Inc. All rights reserved. This article was published in Biochem Biophys Res Commun and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords