alexa Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: a potential injectable cellular product for nucleus pulposus regeneration.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Kumar D, Gerges I, Tamplenizza M, Lenardi C, Forsyth NR,

Abstract Share this page

Abstract Nucleus pulposus (NP) tissue damage can induce detrimental mechanical stresses and strains on the intervertebral disc, leading to disc degeneration. This study demonstrates the potential of a novel, photo-curable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with polyamidoamine (PAA)) to encapsulate and differentiate human mesenchymal stem cells (hMSC) towards a NP phenotype under hypoxic conditions which could be used to restore NP tissue function and mechanical properties. Encapsulated hMSC cultured in media (hMSC and chondrogenic) displayed good cell viability up to day 14. The genotoxicity effects of ultraviolet (UV) on hMSC activity confirmed the acceptability of 2.5min of UV light exposure to cells. Cytotoxicity investigations revealed that hMSC cultured in media containing p(HEMA-co-APMA) grafted with PAA degradation product (10\% and 20\%v/v concentration) for 14days significantly decreased the initial hMSC adhesion ability and proliferation rate from 24hrs to day 14. Successful differentiation of encapsulated hMSC within hydrogels towards chondrogenesis was observed with elevated expression levels of aggrecan and collagen II when cultured in chondrogenic media under hypoxic conditions, in comparison with culture in hMSC media for 14days. Characterization of the mechanical properties revealed a significant decrease in stiffness and modulus values of cellular hydrogels in comparison with acellular hydrogels at both day 7 and day 14. These results demonstrate the potential use of an in vivo photo-curable injectable, synthetic hydrogel with encapsulated hMSC for application in the repair and regeneration of NP tissue. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. This article was published in Acta Biomater and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th International Conference on Tissue Engineering and Regenerative Medicine
    August 23-24 , 2017 San Francisco, California ,USA
  • 8th International Conference on Tissue Science and Regenarative Medicine
    September 11-12, 2017 Singapore City, singapore
  • 9th Annual Conference on Stem Cell and Regenerative Medicine
    Sep 25-26, 2017 Berlin, Germany
  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords