alexa Three-dimensional numerical simulations of flow through a stenosed coronary bypass.
General Science

General Science

Journal of Forensic Biomechanics

Author(s): Bertolotti C, Deplano V

Abstract Share this page

Abstract This work analyzes the flow patterns at the anastomosis of a stenosed coronary bypass. Three-dimensional numerical simulations are performed using a finite elements method. We consider a geometrical model of the host coronary artery with and without a 75\% severity stenosis for three different locations from the anastomosis. The flow features - velocity profiles, secondary motions and wall shear stresses - are compared for different configurations of the flow rate and of the distance of the anastomosis from the site of occlusion (called distance of grafting). The combination of the junction flow effects - counter rotating vortices - with the stenosis effects - confined jet flow - is particularly important when the distance of grafting is short. Given that the residual flow issued from the pathologic stenosis being non-negligible after two weeks grafting, models without stenosis cannot predict the evolution of the wall shear stress in the vicinity of the anastomosis.
This article was published in J Biomech and referenced in Journal of Forensic Biomechanics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version