alexa Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J,

Abstract Share this page

Abstract A method has been developed for culturing cardiac myocytes in a collagen matrix to produce a coherently contracting 3-dimensional model heart tissue that allows direct measurement of isometric contractile force. Embryonic chick cardiomyocytes were mixed with collagen solution and allowed to gel between two Velcro-coated glass tubes. During culture, the cardiomyocytes formed spontaneously beating cardiac myocyte-populated matrices (CMPMs) anchored at opposite ends to the Velcro-covered tubes through which they could be attached to a force measuring system. Immunohistochemistry and electron microscopy revealed a highly organized tissue-like structure of alpha-actin and alpha-tropomyosin-positive cardiac myocytes exhibiting typical cross-striation, sarcomeric myofilaments, intercalated discs, desmosomes, and tight junctions. Force measurements of paced or unpaced CMPMs were performed in organ baths after 6-11 days of cultivation and were stable for up to 24 h. Force increased with frequency between 0.8 and 2.0 Hz (positive "staircase"), increasing rest length (Starling mechanism), and increasing extracellular calcium. The utility of this system as a test bed for genetic manipulation was demonstrated by infecting the CMPMs with a recombinant beta-galactosidase-carrying adenovirus. Transduction efficiency increased from about 5\% (MOI 0.1) to about 50\% (MOI 100). CMPMs display more physiological characteristics of intact heart tissue than monolayer cultures. This approach, simpler and faster than generation of transgenic animals, should allow functional consequences of genetic or pharmacological manipulation of cardiomyocytes in vitro to be studied under highly controlled conditions.
This article was published in FASEB J and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords