alexa Thresholding of Wavelet Coefficients as Multiple Hypotheses Testing Procedure
Mathematics

Mathematics

Journal of Applied & Computational Mathematics

Author(s): Felix Abramovich, Yoav Benjamini

Abstract Share this page

Given noisy signal, its finite discrete wavelet transform is an estimator of signal’s wavelet expansion coefficients. An appropriate thresholding of coefficients for further reconstruction of de-noised signal plays a key-role in the wavelet decomposition/reconstruction procedure. DJ1 proposed a global threshold λ=σ2logn−−−−−√λ=σ2log⁡n and showed that such a threshold asymptotically reduces the expected risk of the corresponding wavelet estimator close to the possible minimum. To apply their threshold for finite samples they suggested to always keep coefficients of the first coarse j0 levels. We demonstrate that the choice of j0 may strongly affect the corresponding estimators. Then, we consider the thresholding of wavelet coefficients as a multiple hypotheses testing problem and use the False Discovery Rate (FDR) approach to multiple testing of [BH1]. The suggested procedure controls the expected proportion of incorrectly kept coefficients among those chosen for the wavelet reconstruction. The resulting procedure is inherently adaptive, and responds to the complexity of the estimated function. Finally, comparing the proposed FDR-threshold with that fixed global of Donoho and Johnstone by evaluating the relative Mean-Square-Error across the various test-functions and noise levels, we find the FDR-estimator to enjoy robustness of MSE-efficiency.

This article was published in Wavelets and Statistics and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords