alexa Thymic dependence of loss of tolerance in mixed allogeneic bone marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Khan A, Tomita Y, Sykes M

Abstract Share this page

Abstract A nonmyeloablative conditioning regimen has recently been developed that allows allogeneic marrow engraftment with induction of permanent mixed chimerism and donor-specific tolerance across fully MHC-mismatched allogeneic barriers. We recently demonstrated that tolerance can be broken in these chimeras by administration of an anti-donor class I-specific monoclonal antibody that eliminates donor hematopoietic cells. We have now investigated the role of the thymus in the loss of tolerance observed when chimerism is eliminated in this manner. Mixed chimeras were prepared in B10 (H2b) recipients by treatment with depleting anti-CD4 and anti-CD8 mAbs, 3-Gy whole body irradiation, and 7-Gy thymic irradiation, followed by B10.A (H2a) bone marrow transplantation. Chimeras were thymectomized 7 weeks later, and were either untreated or were depleted of donor cells with anti-donor class I (Dd-specific) mAb 34-2-12. Control chimeras that were not thymectomized also received anti-donor monoclonal antibodies or no further treatment. Of the four groups, only euthymic animals that were depleted of donor antigen showed a loss of tolerance, as evidenced by rejection of B10.A skin grafts. In contrast to untreated control and thymectomized, anti-Dd-treated chimeras, these euthymic anti-Dd-treated chimeras showed significant recovery of Vbeta11+ T cells, which can recognize Mtv antigens presented by donor I-E molecules. The requirement for a thymus for loss of tolerance in the absence of donor antigen was verified in an adoptive transfer model, in which chimera (B10.A-->B10) spleen cells were depleted of donor-type cells ex vivo, adoptively transferred into B6 nu/nu mice, and then further depleted of donor-type antigen with monoclonal antibody treatment in vivo. These B6 nu/nu mice maintained donor-specific tolerance to B10.A skin grafts. The absence of active suppression as a potent mechanism of tolerance in long-term mixed chimeras was confirmed by the loss of mixed chimerism and of tolerance that was readily induced by injection of naive host-type spleen cells. Together, our results suggest that in mixed allogeneic chimeras, intrathymic clonal deletion, and not peripheral suppression or anergy, is the major mechanism maintaining donor-specific tolerance.
This article was published in Transplantation and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords