alexa Thymic neuroendocrine self-antigens. Role in T-cell development and central T-cell self-tolerance.
Neurology

Neurology

Journal of Clinical & Experimental Neuroimmunology

Author(s): Geenen V, Martens H, Brilot F, Renard C, Franchimont D

Abstract Share this page

The repertoire of thymic neuroendocrine precursors plays a dual role in T-cell differentiation as the source of either cryptocrine accessory signals in T-cell development or neuroendocrine self-antigens presented by the thymic major histocompatibility complex (MHC) machinery. Thymic neuroendocrine self-antigens usually correspond to peptide sequences highly conserved during the evolution of one family. The thymic presentation of some neuroendocrine self-antigens is not restricted by MHC alleles. Oxytocin (OT) is the dominant peptide of the neurohypophysial family. It is expressed by thymic epithelial and nurse cells (TEC/TNCs) of different species. Ontogenetic studies have shown that the thymic expression of the OT gene precedes the hypothalamic one. Both OT and VP stimulate the phosphorylation of p125FAK and other focal adhesion-related proteins in murine immature T cells. These early cell activation events could play a role in the promotion of close interactions between thymic stromal cells and developing T cells. It is established that such interactions are fundamental for the progression of thymic T-cell differentiation. Insulin-like growth factor 2 (IGF-2) is the dominant thymic polypeptide of the insulin family. Using fetal thymic organ cultures (FTOCs), the inhibition of thymic IGF-2-mediated signaling was shown to block the early stages of T-cell differentiation. The treatment of FTOCs with an mAb anti-(pro)insulin had no effect on T-cell development. In an animal model of autoimmune type 1 diabetes (BB rat), thymic levels of (pro)insulin and IGF-1 mRNAs were normal both in diabetes-resistant and diabetes-prone BB rats. IGF-2 transcripts were clearly identified in all thymuses from diabetes-resistant adult (5-week) and young (2- and 5-days) BB rats. In marked contrast, the IGF-2 transcripts were absent and the IGF-2 protein was almost undetectable in +/- 80% of the thymuses from diabetes-prone adult and young BB rats. These data show that a defect of the thymic IGF-2-mediated tolerogenic function might play an important role in the pathophysiology of autoimmune Type 1 diabetes.

  • To read the full article Visit
  • Subscription
This article was published in Annals of New York Academy of Sciences and referenced in Journal of Clinical & Experimental Neuroimmunology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version