alexa Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Veronesi MC, Aldouby Y, Domb AJ, Kubek MJ

Abstract Share this page

Abstract Thyrotropin-releasing hormone (TRH) is reported to have anticonvulsant effects in animal seizure models and certain intractable epileptic patients. However, its duration of action is limited by rapid tissue metabolism and the blood brain barrier. Direct nose-brain delivery of neuropeptides in sustained-release biodegradable nanoparticles (NPs) is a promising mode of therapy for enhancing CNS bioavailability. Bioactivity/neuroprotection of d,l polylactide nanoparticles containing TRH was assessed against glutamate toxicity in cultured rat fetal hippocampal neurons. Subsequently, we utilized the kindling model of temporal lobe epilepsy to determine if intranasal administration of nanoparticles containing TRH (TRH-NPs) could inhibit kindling development. Animals received daily treatments of either blank (control) or TRH-NPs for 7 days before initiation of kindling. On day 8 and each day thereafter until either fully kindled or until day 20, the animals received daily treatments before receiving a kindling stimulus 3 h later. Afterdischarge duration (ADD) was assessed via electroencephalographs recorded from electrodes in the basolateral amygdalae and behavioral seizure stereotypy was simultaneously recorded digitally. Intranasal application of TRH-NPs resulted in a significant reduction in seizure ADD as kindling progressed, while the number of stimulations required to reach stage V seizures and to become permanently kindled was significantly greater in TRH-NP-treated subjects. Additionally, delay to clonus was significantly prolonged while clonus duration was reduced indicating a less severe seizure in TRH-NP-treated subjects. Our results provide proof of principle that intranasal delivery of sustained-release TRH-NPs may be neuroprotective and can be utilized to suppress seizures and perhaps epileptogenesis. This article was published in Brain Res and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version