alexa Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by (1)H NMR spectroscopy.


Journal of Neurology & Neurophysiology

Author(s): Pascual JM, Solivera J, Prieto R, Barrios L, LpezLarrubia P, , Pascual JM, Solivera J, Prieto R, Barrios L, LpezLarrubia P,

Abstract Share this page

Abstract Experimental models of traumatic brain injury (TBI) provide a useful tool for understanding the cerebral metabolic changes induced by this pathological condition. Here, we report on the time course of changes in cerebral metabolites after TBI and its correlation with early brain morphological changes using a combination of high-resolution proton magnetic resonance spectroscopy ((1)H MRS) and magnetic resonance imaging (MRI). Adult male Sprague-Dawley rats were subjected to closed head impact and examined by MRI at 1, 9, 24, 48, and and 72 h after the injury. Extracts from funnel frozen rat brains were then obtained and analyzed quantitatively by high-resolution (1)H MRS. Finally, statistical multivariate analysis was carried out to identify the combination of cerebral metabolites that best described the time evolution of diffuse TBI. The temporal changes observed in the concentration of cerebral metabolites followed three different patterns. The first pattern included taurine, threonine, and glycine, with concentrations peaking 24 h after the injury. The second pattern included glutamate, GABA, and alanine, with concentrations remaining elevated between 24 and 48 h post-injury. The third one involved creatine-phosphocreatine, N-acetylaspartate, and myo-inositol, with concentrations peaking 48 h after the injury. A multivariate stepwise discriminant analysis revealed that the combination of the organic osmolytes taurine and myo-inositol allowed optimal discrimination among the different time groups. Our findings suggest that the profile of some specific brain molecules that play a role as organic osmolytes can be used to follow-up the progression of the early diffuse brain edema response induced by TBI. This article was published in J Neurotrauma and referenced in Journal of Neurology & Neurophysiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version