alexa Time resolved spectroscopic studies on the intact human lens.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetic Complications & Medicine

Author(s): Dillon J, Dillon J, Atherton SJ

Abstract Share this page

Abstract The human lens is continually under photooxidative stress from ambient radiation. In the young lens the major absorbing (between 300-400 nm) species is the glucoside of 3-hydroxy kynurenine. Using time resolved fluorescence spectroscopy on both the isolated compound and the intact human lens, the first excited singlet state of this compound is shown to have fast (ps) decay processes. This would tend to minimize damage to lens constituents because there would be little time for energy transfer into more harmful channels. Thus, this compound appears to act as a protection for the retina. With aging, human lens proteins become yellow with absorption out to 450 nm. Time resolved diffuse reflectance spectroscopic studies on intact older human lenses showed that excitation (355 nm) resulted in the formation of long lived (microseconds) transient species with an absorption maximum at ca 490 nm. Similar spectra were obtained from two model systems used to explain age related changes in human lens proteins.
  • To read the full article Visit
  • Subscription
This article was published in Photochem Photobiol and referenced in Journal of Diabetic Complications & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords