alexa Tip-enhanced near-field optical microscopy.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Hartschuh A

Abstract Share this page

Abstract Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials, including quantum structures and biological surfaces. An optical technique is reviewed that relies on the enhanced electric fields in the proximity of a sharp, laser-irradiated metal tip. These fields are utilized for spatially confined probing of various optical signals, thus allowing for a detailed sample characterization far below the diffraction limit. In addition, tip-enhanced fields also provide the sensitivity crucial for the detection of nanoscale volumes. After outlining the principles of near-field optics, the mechanisms contributing to local field enhancement and how it can be used to enhance optical signals are discussed. Different experimental methods are presented and several recent examples of Raman and fluorescence microscopy with 10 nm spatial resolution of single molecules are reviewed. This article was published in Angew Chem Int Ed Engl and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords