alexa Tissue response to mechanical vibrations for "sonoelasticity imaging".


Journal of Applied Mechanical Engineering

Author(s): Parker KJ, Huang SR, Musulin RA, Lerner RM

Abstract Share this page

Abstract The goal of "sonoelasticity imaging" is to differentiate between normal soft tissues and hard lesions. This is done by measuring and then displaying the ultrasound Doppler spectrum of regions within tissues which are mechanically forced with low frequency (20-1000 Hz) vibrations. The resolution and sensitivity of the technique ultimately rest on the spatial resolution of ultrasound Doppler detection, the low frequency mechanical properties of tissues, and the vibration response of layered, inhomogeneous regions with hard tumor inclusions and complicated boundary conditions set by the presence of skin, bones and other regions. An initial investigation has measured some tissue stiffness parameters, and applied these in a NASTRAN finite element analysis to simulate a prostate tumor in the pelvic cavity. The measurements show a wide separation between the elastic modulus of tumors and soft tissues such as muscle and prostate. NASTRAN analyses show the ability to delineate regions of different elasticity based on the pattern of vibration amplitudes. The ability to change vibration frequency within the 100-300 Hz band seems particularly helpful in simulations and experiments which visualize small stiff inclusions in tissues. Preliminary results support the postulate that sonoelasticity imaging can provide useful information concerning tissue properties that are not otherwise obtainable.
This article was published in Ultrasound Med Biol and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version