alexa Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA

Abstract Share this page

Abstract PURPOSE: To use combined proton (1H) and sodium 23 (23Na) magnetic resonance (MR) imaging to noninvasively quantify total tissue sodium concentration and to determine if concentration is altered in malignant human brain tumors. MATERIALS AND METHODS: Absolute tissue sodium concentration in malignant gliomas was measured on quantitative three-dimensional 23Na MR images with tissue identification from registered 1H MR images. Concentration was determined in gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and vitreous humor in 20 patients with pathologically proven malignant brain tumors (astrocytoma, n = 17; oligodendroglioma, n = 3) and in nine healthy volunteers. Sodium concentration in tumors and edema was determined from 23Na image signal intensities in regions that were contrast material enhanced on T1-weighted 1H images (tumors) or regions that were only hyperintense on fluid-attenuated inversion recovery (FLAIR) 1H images (edema). Sodium concentrations were measured noninvasively from 23Na images obtained with short echo times (0.4 msec) by using external saline solution phantoms for reference. Differences in mean sodium concentration of all healthy tissue and lesions in patients were tested with a paired t test. Concentration in uninvolved tissues in patients was compared with that in the same tissue types in the volunteers with an independent samples two-tailed t test. RESULTS: Mean concentration (in millimoles per kilogram wet weight) was 61 +/- 8 (SD) for GM, 69 +/- 10 for WM, 135 +/- 10 for CSF, 113 +/- 14 for vitreous humor, 103 +/- 36 for tumor, 68 +/- 11 for unaffected contralateral tissue, and 98 +/- 12 for FLAIR hyperintense regions surrounding tumors. Significant differences (P <.002) in sodium concentration were demonstrated by using a t test for both tumors and surrounding FLAIR hyperintense tissues versus GM, WM, CSF, and contralateral brain tissue. CONCLUSION: 23Na MR imaging with short echo times can be used to quantify absolute tissue sodium concentration in patients with brain tumors and shows increased sodium concentration in tumors relative to that in normal brain structures. Copyright RSNA, 2003 This article was published in Radiology and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords