alexa Tissue transglutaminase: a new target to reverse cancer drug resistance.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Budillon A, Carbone C, Di Gennaro E

Abstract Share this page

Abstract Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients.
This article was published in Amino Acids and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords