alexa TLR4 Asp299Gly, CD14 C-260T, plasma levels of the soluble receptor CD14 and the risk of coronary heart disease: The PRIME Study.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Morange PE, Tiret L, Saut N, Luc G, Arveiler D,

Abstract Share this page

Abstract TLR4 and CD14 are two components of the LPS receptor complex, which are considered to play a key role in the pathogenesis of atherosclerosis. TLR4/Asp299Gly and CD14/C-260T polymorphisms are thought to modulate the activity of this complex. The aim of the study was to examine the association between the TLR4/Asp299Gly and CD14/C-260T polymorphisms, plasma levels of the soluble receptor CD14 (sCD14), and the incidence of coronary heart disease (CHD) in a prospective cohort (the PRIME Study) of 9758 healthy men aged 50-59 years recruited in France and Northern Ireland. A nested case-control design was used, comparing the 249 participants who developed a CHD event during the 5-year follow-up with 492 population- and age-matched control subjects. The two polymorphisms were genotyped and baseline plasma concentrations of sCD14 were measured. None of the two polymorphisms, or sCD14 levels, either considered alone or in combination, were associated with the risk of CHD. The CD14/C-260T allele was associated with increased plasma concentrations of soluble thrombomodulin and vascular cell adhesion molecule-1 and, to a lesser extent, sCD14. No relationship was observed between the TLR4 polymorphism and, any of the inflammatory and endothelial markers measured. The TLR4/Asp299Gly and CD14/C-260T polymorphisms and plasma sCD14 concentrations do not appear as significant predictors of the risk of CHD in healthy individuals. This article was published in Eur J Hum Genet and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version
  • Fatih Yalcin
    EARLY IMAGING BIOMARKER IN REMODELING DUE TO HEART FAILURE
    PDF Version
  • Samuel C Dudley
    Novel biomarkers for diastolic heart failure
    PDF Version
  • Abdulaziz U Joury
    Acute Myocardial Infarction as First Presentation among patients with Coronary Heart Disease
    PPT Version | PDF Version
  • Helena Dominguez
    Can we protect the brain against thromboembolism during open heart surgery? LAACS project
    PDF Version
  • Saverio Gentile
    Ion channels phosphorylopathy: 3rd International Conference on Clinical & Experimental Cardiology April 15-17, 2013 A link between genomic variations and heart arrhythmia
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords