alexa Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature.
Genetics

Genetics

Molecular Biology: Open Access

Author(s): Bonafe CF, Vital CM, Telles RC, Gonalves MC, Matsuura MS, , Bonafe CF, Vital CM, Telles RC, Gonalves MC, Matsuura MS,

Abstract Share this page

Abstract We investigated the effect of low temperature and urea combined with high pressure on tobacco mosaic virus (TMV). The evaluation of its aggregation state and denaturation process was studied using gel filtration, transmission electron microscopy, and spectroscopic methods. The incubation at 2.5 kbar induced 18\% dissociation, and decreasing of temperature to -19 degreesC promoted additional dissociation to 72\%, with stabilization of the dissociation products. Under such conditions, extensive denaturation did not occur. The apparent enthalpy and entropy of dissociation (Delta and TDelta) were -9.04 kcal/mol subunit and -15.1 kcal/mol subunit, respectively, indicating that the TMV association is an entropicly driven process. The apparent free energy of stabilization given by the presence of RNA is at least -1.7 kcal/mol subunit. Urea-induced dissociation of TMV samples and incubation at high-pressure promoted a higher degree of dissociation. The volume change of dissociation decreased in magnitude from -16.3 to -3.1 mL/mol of dissociated subunit, respectively, in the absence and presence of 2.5 M urea, suggesting exposure of the protein-protein interface to the solvent. High-pressure induced remarkable TMV denaturation in the presence of 2.5 M urea, with a volume change of -101 mL/mol of denatured subunit. The apparent enthalpy and entropy of denaturation (Delta and TDelta) by 1.75 M urea at 2.5 kbar was -11.1 and -10.2 kcal/mol subunit, respectively, demonstrating that the TMV protein coat presents an apparent free energy of denaturation by urea close to zero. Although the processes could not be assumed to be pure equilibria, these thermodynamic parameters could be derived by assuming a steady-state condition. This article was published in Biochemistry and referenced in Molecular Biology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords