alexa Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Medvedev AE, Sabroe I, Hasday JD, Vogel SN

Abstract Share this page

Abstract Many host cell types, including endothelial and epithelial cells, neutrophils, monocytes, natural killer cells, dendritic cells and macrophages, initiate the first line of defense against infection by sensing conserved microbial structures through Toll-like receptors (TLRs). Recognition of microbial ligands by TLRs induces their oligomerization and triggers intracellular signaling pathways, leading to production of pro- and anti-inflammatory cytokines. Dysregulation of the fine molecular mechanisms that tightly control TLR signaling may lead to hyperactivation of host cells by microbial products and septic shock. A prior exposure to bacterial products such as lipopolysaccharide (LPS) may result in a transient state of refractoriness to subsequent challenge that has been referred to as 'tolerance'. Tolerance has been postulated as a protective mechanism limiting excessive inflammation and preventing septic shock. However, tolerance may compromise the host's ability to counteract subsequent bacterial challenge since many septic patients exhibit an increased incidence of recurrent bacterial infection and suppressed monocyte responsiveness to LPS, closely resembling the tolerant phenotype. Thus, by studying mechanisms of microbial tolerance, we may gain insights into how normal regulatory mechanisms are dysregulated, leading ultimately to microbial hypo-responsiveness and life-threatening disease. In this review, we present current theories of the molecular mechanisms that underlie induction and maintenance of 'microbial tolerance', and discuss the possible relevance of tolerance to several infectious and non-infectious diseases. This article was published in J Endotoxin Res and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

bus[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords