alexa Toll like receptor signaling in "inflammaging": microRNA as new players.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L,

Abstract Share this page

Abstract The age-related changes of immune system functions are complex phenomena incompletely understood. The acquired immune system shows a functional decline in ability to respond to new pathogens during aging, whereas serum levels of inflammatory cytokines are increased with age. The source of this age-related systemic chronic inflammation, named inflammaging, was mainly attributed to the progressive activation of immune cells over time. However, recent studies have shown that the process of cellular senescence can be an important additional contributor to chronic inflammation, since senescent cells acquire a phenotype named "senescence-associated secretory phenotype" (SASP), characterized by the enhanced secretion of many inflammation modulators. Pathogen-associated molecular pattern receptors, in particular Toll-like receptors (TLRs), are key molecules in the response of innate immunity cells to pathological stimuli. An intriguing and innovative hypothesis is that the dysfunction of TLRs signaling and the acquisition of SASP can be two interconnected phenomena. The TLR family, including receptors and co-effector molecules, do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signaling events, including inhibition of positive and activation of negative modulators of TLR signaling. MicroRNAs (miRNAs) are a newly discovered class of gene regulators acting as post-transcriptional repressors of a number of genes. The miRNA property to finely-tune gene expression makes them right for immune system regulation, which requires precise control for proper activity. We reviewed evidences suggesting that miRNAs can modulate TLR signaling mainly by three different mechanisms: 1) miRNAs can directly target components of the TLR signaling system, 2) miRNA expression can be directly regulated by TLRs pathway activation and 3) miRNAs can directly activate the RNA-sensing TLRs, like TLR-8, in humans. We also reviewed how TLR signaling is modulated by miRNAs during aging, and how an impaired miRNAs/TLR signaling interaction in immune system cells and related cells, i.e. endothelial cells and adipocytes, can contribute to inflammaging observed in normal aging. Interestingly, this impairment appears accelerated in presence of the majors age-related diseases, such as cardiovascular diseases, diabetes, neurodegenerative diseases and cancers.
This article was published in Immun Ageing and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords