alexa Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Cole LE, Shirey KA, Barry E, Santiago A, Rallabhandi P, , Cole LE, Shirey KA, Barry E, Santiago A, Rallabhandi P,

Abstract Share this page

Abstract Francisella tularensis, an aerobic, non-spore-forming, gram-negative coccobacillus, is the causative agent of tularemia. We reported previously that F. tularensis live vaccine strain (LVS) elicited strong, dose-dependent NF-kappaB reporter activity in Toll-like receptor 2 (TLR2)-expressing HEK293T cells and proinflammatory gene expression in primary murine macrophages. Herein, we report that F. tularensis LVS-induced murine macrophage proinflammatory cytokine gene and protein expression are overwhelmingly TLR2 dependent, as evidenced by the abrogated responses of TLR2(-/-) macrophages. F. tularensis LVS infection also increased expression of TLR2 both in vitro, in mouse macrophages, and in vivo, in livers from F. tularensis LVS-infected mice. Colocalization of intracellular F. tularensis LVS, TLR2, and MyD88 was visualized by confocal microscopy. Signaling was abrogated if the F. tularensis LVS organisms were heat or formalin killed or treated with chloramphenicol, indicating that the TLR2 agonist activity is dependent on new bacterial protein synthesis. F. tularensis LVS replicates in macrophages; however, bacterial replication was not required for TLR2 signaling because LVSDeltaguaA, an F. tularensis LVS guanine auxotroph that fails to replicate in the absence of exogenous guanine, activated NF-kappaB in TLR2-transfected HEK293T cells and induced cytokine expression in wild-type macrophages comparably to wild-type F. tularensis LVS. Collectively, these data indicate that the primary macrophage response to F. tularensis LVS is overwhelmingly TLR2 dependent, requires de novo bacterial protein synthesis, and is independent of intracellular F. tularensis replication.
This article was published in Infect Immun and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords